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Abstract. The paper presents an approach to bi-level programming using a duality gap-penalty 
function format. A new exact penalty function exists for obtaining a global optimal solution for the 
linear case, and an algorithm is given for doing this, making use of some new theoretical properties. 
For each penalty parameter value, the central optimisation problem is one of maximising a convex 
function over a polytope, for which a modification of an algorithm of Tuy (1964) is used. Some 
numerical results are given. The approach has other features which assist the actual decisionmaking 
process, which make use of the natural roles of duality gaps and penalty parameters. The approach 
also allows a natural generalization to nonlinear problems. 
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1. Introduction 

There has been much activity since the early 1980s in bi-level programming (BLP) 
which may be thought of as a static version of Stackelberg leader-follower games 
[22]. In several fields ranging from economics to transportation engineering, 
researchers used BLPs to model problems involving multiple decision makers, 
These problems include organizational design [2], spatial competition [16], facility 
location [23], signal optimization [19], and traffic assignment [9]. 

In BLP, the higher level decision maker (the leader) controls decision vector 
x E X C R  nl in order to solve an outer problem consisting of maximizing his 
objective F(x, y), where y E Y C_R n2 is the lower level (follower's) decision 
vector. For r followers, y = (Yl, �9 - . ,  Yr) and n2 -- Z n i where n,. is the dimension 
of the i-th follower's decision variable. For a given x- -x ' ,  the inner problem 
consists of the follower maximizing his objective function f(x' ,  y) to obtain 
y ' E  RR(x ' )  where RR(. )  is the rational reaction function of the follower. 

A problem with bi-level mathematical programs is that they are non-convex. 
There are two main approaches to solve bi-level linear programming problems: 
enumeration techniques including implicit enumeration [11], and the "k-th best" 
algorithm [10], and the Kuhn-Tucker approach which is solved by mixed integer 
programming [13], grid search [5], and parametric complementary pivoting 
[10, 18]. While these approaches try to handle the nonconvexity, it is well known 
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that the popular Bard's grid search and Bialas and Karwan's parametric com- 
plementary pivoting methods only find local minima. In a recent paper, Anandal- 
ingam et al. [3] use simulated annealing and genetic algorithm based approaches 
to obtain global solutions to the bi-level linear program. 

In this paper, we provide an algorithm, based on a penalty function approach, 
for solving bi-level linear programming problems. This work uses an alternative 
format to that of Bard [6], and is based on the work of Anandalingam and White 
[4]. For a given x, the leader's decision vector, the follower is at his rational 
reaction set when the duality gap of the second level problem becomes a zero. 
The outer problem is solved by appending to the leader's objective function, a 
function that minimizes the duality gap of the follower's problem. Although the 
hybrid objective function is nonlinear, it can be decomposed to provide a set of 
linear programs conditioned on either the decision vectors (x, y), or the dual 
vectors w of the follower's problem. There is an exact penalty function that yields 
the global optimal solution, which provides a finite algorithm for extracting it by 
solving a series of linear programs. The paper of Bard [6] also uses a penalty 
function approach. Although there is some common ground with the current  
paper, the content and objective of Bard's paper are somewhat distinct from 
those of the current paper. The penalty part of Bard's paper does offer an 
alternative penalty formulation and the paper is of sufficient significance to be 
addressed as a special issue. This is done in Section 6 in our paper. 

There are related papers by Shimizu and Aiyoshi [21] and Aiyoshi and Shimizu 
[1] that use a penalty function approach for solving nonlinear bi-level program- 
ming problems. These papers are significantly different from ours. In their paper, 
the objective functions of the leader and follower are nonlinear and the penalty 
function is convex, facilitating the use of the conjugate gradient method. In 
addition, they solve for local, rather than global, optima. Also, the proposed 
method solves a sequence of linear programs which is easier to use than the 
methods proposed by Shimizu and Aiyoshi [21]. 

The contributions of the paper are as follows 

(i) 

(ii) 

(iii) 

A new global optimization penalty function method is presented for the 
linear bi-level programming problem. This is done in Section 3. 
A comparison is made with the penalty function method of Bard [6], and it 
is demonstrated that the proposed penalty formulation has some qualitative 
advantages over that of Bard [6]. This is done in Section 6. 
The penalty function-duality gap approach gives a natural way of capturing 
the optimality conditions of the follower in a manner which allows 
mathematical characteristics to be used, and the impact of deviations from 
optimality to be evaluated. This is explored in Section 5, where the 
significance of solving the penalty scalar optimization problem for any given 
value of the penalty parameter K is explored in the context of the 
decisionmaking process involved. 
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(viii) 

(iv) Although expressions for values of K large enough to lead to actual optima 

are given in Section 6, it remains an open question as to how such K may be 
computed. Thus, at this stage of the work, we can only select some K to 
begin with and to increase K until we achieve an optimal solution, or a 
satisfactory solution, using the results of Section 5 if desired. It is of some 
computational advantage not to insist on K being too large because of 
possible computational instabilities. 

(v) Another advantage of the penalty function-duality gap approach is that the 
multi-decisionmaker, multi-level, problem is also reducible to a single 
penalty factor scalar optimization problem. Although we have not done 
this, it does offer an approach to even more complex problems, without 
adding more complexity to the approach than that arising from the number 
of variables involved. 

(vi) It is possible to extend the penalty function-duality gap approach to some 
non-linear bi-level problems, and this is done in Section 6. It is not possible 
to extend the approach of Bard [6] in the same way. Some of the results at 
the linear case will still hold. This is done in Section 6. 

(vii) Some algorithmic and computational results are given in Sections 3 and 4 
for the linear case. The algorithm used is essentially that of Tuy [24] 
modified to cope with degeneracy (an unlikely event), and with cycling, and 
supplemented with some theoretical devices via Theorems 5-8. Theorems 
6-7 are new and give useful results in cases when positive or negative 
correlation between the objective functions of the decisionmakers arises. It 
is established that the computational results using the modified method of 
Tuy are not as good as these of Bard [6]. The problem of maximizing a 
convex function over a polytope is a hard one, whichever method is used. 
There are other methods which we have not explored. The theoretical 
appeal of the penalty function-duality gap approach as outlined in the 
earlier paragraphs seems, at this stage, to explore other methods, which 
may be able to exploit the particular structure of the problem. The function 
F(-, " , . ,  K), is a bi-linear function for which methods exist. Indeed, the 
proposed method is a method for solving any bi-linear problem. Other 
methods may be found, for example, in Horst and Tuy [17]. 
Theorems 6-8 of Section 3.3 are geared to finding starting solutions for the 
algorithm, whose goodness will depend upon the degree of correlation 
between the objectives. However, the bounds given are usable in a branch 
and bound mode. The same applies to the loss of optimality bounds 
developed in Section 5 for other purposes. 

(ix) Finally we note that the singleton requirement A1 is weaker than the usual 
requirement made in other algorithms, in that it is required to apply only 
for optimal solutions. This is somewhat more reasonable to accept in 
practice. It is only required to get the exact penalty result. 
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2. The Bi-Level Programming Problem 

Let us consider a two-level hierarchical system where the higher level decision 
maker ,  the leader,  controls decision vector x E X, and  the lower level decision 

maker ,  the follower, controls decision vector y ~ Y. The leader is assumed to 
select a decision vector first, and the follower to select a decision vector after that. 

In order  to formulate  the problem, let us define the following: 

X = a closed convex set of R n l  , 

Y = a closed convex set of R n2 , 

f ( . ) ,F( . ) :  X • Y----> R 1 . 

g(-) :X • Y--> R m . 

Using this notation,  the bi-level programming problem is formulated as: 

P/  max F(x, y) (1) 
x 

where y solves 

max f(x,  y) (2) 
Y 

s.t. g(x, y) <<- 0 (3) 

x E X ,  y E Y .  (4) 

For  problem P1, the following definitions are needed: 

D E F I N I T I O N  1. For x E X, the set S(x) = {y: y ~ Y, g(x, y) <~ 0} is called the 

follower's solution set. 

D E F I N I T I O N  2. For  x E X ,  the set R R ( x ) = { y E a r g m a x f ( x , y ) : y E S ( x ) }  is 

called the follower's rational reaction set. 

The rational reaction set of the follower may be empty  and may not be a 
singleton. In order to avoid this difficulty, for the purposes of Section 2 - 4  we will 

assume that: 

[A1] if x* is an optimal solution for the leader, then RR(x*) is a 

singleton.  

D E F I N I T I O N  3. The feasibility set of problem P1 is denoted by: 

S = {(x, y): x E X ,  y E RR(x ) } .  

Problem P1 can be rewritten using this notation as: 
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P2 max F(x ,y )  (5) 
x , y  

s.t. (x, y) E S .  (6) 

In the case where all functions are linear, the problem becomes a bi-level linear 
program which is formulated as follows: 

P3 max F(x, y) = ax + by (7) 

where y solves 

max f(x,  y) = cx + dy (8) 
Y 

s.t. g ( x , y ) = A x + B y - p < ~ O  (9) 

x, y~>0. (10) 

For problem P3 we have X = R~ l, Y = R~ 2. 

Once x is given, the follower's objective function is simply dy, and cx can be 
dropped from (8). 

3. A Penalty Function Approach 

3.1. THEORETICAL RESULTS 

The proposed approach for solving bi-level linear programming is now developed. 
It involves the use of the fact that a duality gap for the follower is zero, for any 
specific x E X, such that S(x)#  4~ (see Section 6.1 for related work of Bard [6]). 

For the linear program given by P3, where the follower's primal problem is 
given by (8)-(10), for a given x, ignoring the constant term cx, the follower's dual 
problem is: 

P4 min w ( p - A x )  (11) 

s.t. wB>id  (12) 

w ~ 0 .  (13) 

Given x and some values of w and y that satisfy the dual and primal constraints 
of the follower's problem, the optimal value of the follower's objective function 
lies in the interval [cx + dy, cx + w ( p -  Ax)]. When the duality gap, given by 
~(x, y, w ) =  [ w ( p - A x ) - d y ] ,  is equal to zero, then the follower's optimal 
solution, for the given x, would be reached. Thus, it is possible to formulate the 
overall problem P3 as (see Theorem 3 later): 

P5 P(K) =max F(x, y, w, K)  = (ax + by) - K(w(p  - Ax)  - dy) (14) 
x , y , w  



402 D. J. WHITE AND G. ANANDALINGAM 

s.t. A x  + By<~p (15) 

wB >! d (16) 

x, y, w~>0 (17) 

where K ~ R +. 

DEFINITION 4. (i) The feasible region of  w is given by 

W= {w: wB >ld, w >i0} . (18) 

(ii) The feasible region o f  z = (x, y) is given by 

Z = {(x, y): A x  + By <~p,x>i0, y / > 0 } .  (19) 

(iii) The extreme points of W and Z are denoted by W v and Zv respectively. 

It will be assumed that: 

[A2] W and Z are non-empty bounded polyhedra, i.e. polytopes. 

In the following, Theorems 1-4 are to be found in Anandalingam and White 
[4]. 

T H E O R E M  1. For a given value o f  w E W and fixed K E R + , define: 

O(w, K) =max [F(x, y, w, K): (x, y) E Z] .  (20) 
x , y  

Then 0 ( ' ,  K)  is convex on R m (see [20], Theorem 5.5), and a solution to the 
problem: 

max [O(w, K): w E W] (21) 
w 

will occur at some w* E W v (see [8], Theorem 3.46). 

T H E O R E M  2. For fixed K E R + , an optimal solution to problem P5 is achievable 
in Z~ x W~, and Z~ x W~ = (Z x W)o. 

T H E O R E M  3. There exists a finite value, K * E  R+, of  K for which an optimal 
solution to the penalty function problem P5 yields an optimal solution to the 
problem P3, VK  >I K*. 

T H E O R E M  4. ([8], Lemma 9.2.1). I f  (x(K), y(K), w(K)) solves P(K)  as a 
function o f  K, both the leader's objective F(x(K),  y(K))  and the duality gap, 
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r y(K), w(K)), of the follower's rational reaction problem are monotonical- 
ly non-increasing in the value of the penalty parameter K. 

A special situation arises in Theorem 3 when b = d, i.e., the leader and follower 
are in unison over the choice of y given x. In this case, K* = 0. 

Theorem 2 gives us the essential features of an algorithm that could be used to 
provide a quasi-local optimum for the bi-level linear programming problem. For a 
given K, the first obvious step is to begin with an arbitrary (x ~ y0) and solve the 
linear program {max F(x ~ y0, w, K) : w E Wv} to obtain an optimal w ~ = 
w(x o, yO, K). Then with w = w ~ find (x 1, y l )  E arg max[F(x, y, w ~ K) : (x, y) C 
Zu]. Then find w I = w(x 1, yl, K), and repeat. This will lead to a partial optimal 
solution for P(K). As Wendell and Hurter [25] have pointed out, in general, 
a partial optimal solution may not be locally optimal. However, because 
F ( . , . , . ,  K),  is bi-linear, the type of problem that is being solved belongs to a class 
of problems for which Wendell and Hurter [25] show that a partial optimum for 
P(K) is locally optimal for P(K) as well. If K is large enough, this solution will be 
a local optimum for the bi-level linear program. It will be shown that the penalty 
function approach can be developed to find a global optimum. 

Note that, although we have assumed that A1 and A2 hold, Theorems 1, 2, and 
4 use A2 only and Theorem 3 uses A1 and A2. The development of a global 
optimization algorithm is now considered. This algorithm will begin with a large 
value of K, and increase it until the problem P3 is solved. If we find an 
appropriate K* for Theorem 3, then we only need to use this one value of K*. 
However,  K* may be very large, and lead to computational instabilities. It is, 
however, possible for the penalty contribution in P5 to become zero for a smaller 
value of K than any upper bound we may wish to use, in which case the solution 
obtained will solve problem P3 ([8], Theorem 9-2-1, Corollary). If we wish to use 
an upper bound, one is given by (45) in Section 6.1. 

As pointed out in Section 1 there are other advantages in using a sequential K 
generation, related to the use of loss of optimality considerations studied in 
Section 5. 

3.2. DEVELOPMENT OF THE ALGORITHM 

Consider the problem P5. For a given K and w, let (x(w, K),  y(w, K)) be a 
solution to (20). Some properties of the penalty function formulation of the 
problem described by P5, P(K) and O(-, K) are now considered. Theorem 5 is 
given in Anandalingam and White [4]. 

T H E O R E M  5. For u, w E W: 

@(u, K) >i O(w, K) - K(u - w)(p - Ax(w, K)) . (22) 
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For given u, w E W  and fixed K@R+, define 

dp(u, w, K) = (u - w)(p - Ax(w, K)) . 

Then from Theorem 5, if ~(u,  W 1, K) < 0, we have: 

waj~arg max{O(w, K) :  w @ W} . (23) 

Expression (23) provides a mechanism for choosing the next vertex in any 
solution procedure for maximizing | K). Thus suppose that, at a particular 
iteration, w ~ is the current vertex. Using w 1, we obtain 19(w 1, K) and obtain an 
optimal solution (x(w 1, K), y(w ~, K)). The next step is to examine the adjacent 
vertices {w as} of w 1. If 19(w is, K)> O(w 1, K) for some s, select w is as the next 
vertex to go to and set w ~ = w ~s. Otherwise, check to see if ~(w*, w ~, K) < 0 for 
some w*(w ~, K) E W v. If so, select w*(w ~, K) as the next vertex to go to and set 
w I = w*(w ~, K). Repeat the procedure. If neither of the cases arise, then w ~ is a 
local optimum of O(., K) in W, and use will be made of part of Tuy's method (see 
[15] for details) to get the next local optimum. See Steps 5-10 below for details. 
Global optimality is reached at (x*, y*, w*) when one can get the largest possible 
value of ~'(-, -, -, K) and also satisfy the optimality conditions of the follower, i.e. 
if 7r(x*, y*, w*) -- 0, (x*, y*) will then solve P3. The zero duality gap is achieved 
monotonically (by Theorem 4) and at a finite K (by Theorem 3). Thus a 
procedure that will increase K in incremental steps, and obtain a global optimal 
solution of P(K) for each value of K, will yield a global optimal solution of the 
problem P3. 

It is possible also to find a local optimal solution of the problem P3 by finding a 
local optimal solution F(., -., -, K) for each value of K, and increasing K in small 
increments until ~r(x(K), y(K) ,w(g))=O where (x(K),y(K),w(K)) is local 
optimum. 

Algorithm for Global Optimum 

Step 0 
Choose K (large) and w 1 ~ W v, 191 = - %  ~1 = w I. 

Step 1 
Find O(w 1, K). 
Obtain (x(w ~, K), y(w 1, K)), 

and set 01 = max[O 1, O(w 1, K)] 

~ 1 = 1  wl i fO(w 1 , K ) > O  ~ 

L &l if O(w 1, K) ~< 01 ' 
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Step 2 
Let {w is} be the adjacent vertices of w 1, 1 ~<s ~N(w1).  
If O(w 1", K) > O 1 for some s, 

set w 1 = w xs and O 1 = O(w 1, K). 

Go to Step 2 

Step 3 
If O(w is, K)  <~ 01, Vs, 

Find r (w ~, K) = min[(Cbw, W 1 , K): w E W]. 
Obtain w*(w 1, K). 

Step 4 
If F(w 1, K) < 0 
then set w 1 = w*(w 1, K). 

Go to Step 1. 

Step 5 
If F(w 1, K)/> 0 

extend unit rays {t is} along the edges from w x, and find 
a, = max[a i> O: O(W 1 -~- ott ls, K) <~ 01], 1 ~< S <~ N(w1). 

Step 6 
Let v is = w ~ + as tls, 1 <~s ~ N ( w  ~) , 
A(W 1) = {/~ = (~.~, Or) ~ R m + l :  

1 is /xw -o '~<0 ,  /zv - o ' / > 0 ,  l<-s<-N(wl) ,  o ' E [ 1 , - 1 ] } ,  
and, for w C W: 

G(w, w 1) = min[/xw - o-: A E ^(w~)]. 

Step 7 
Let w 1. ~ arg max[G(w, w1): w ~ W]. 

Step 8 
If G(w 1., W 1) ~ 0 

then ~1 ~ arg max[O(w, K) : w E W], and the 
optimal value of O(., K) is reached for the particular K, with the 
solution (x(ff 1, K),  y ( ~ l ,  K)) (see Section 3.3(b)). 
Go to step 10. 

Step 9 
If G(w 1., W 1) > 0 ,  
set w 1 = w 1.. 

Go to step 1 (see Section 3.3(c)). 
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Step 10 
If 7r(2(w1), 37(wl), v~ 1 > 0), set 
K = K + A .  

Go to step 1. 
Otherwise 1r(2(w~), y(wl), ~1)= 0 and, (x(~l), y(l~!))  solves P3. 

Obtaining adjacent vertices in Step 2 is quite simple; we use the concept that an 
extreme vector in a polytope is made up to basic and nonbasic variables. Some 
bookkeeping is required within Step 2 to make sure that each adjacent vertex 
examined is different from the previous one. However, when one leaves Step 2, 
only the current vertex needs to be stored and carried forward. 

Steps 5-8 are modifications of the original algorithm proposed by Tuy [24]. It 
involves generating cones at local optimal solutions (Step 5), making sure that the 
generated cone includes the feasible region (Steps 6-7), and testing to see if a 
vertex included in the cone is better than the local optimal solution for the current 
value of K (Step 8). Horst and Tuy [17] provide a detailed description, both 
verbal and mathematical, of these kinds of cone splitting algorithms (page 195 if). 
Each time the algorithm passes through Steps 5-8, the size of the feasible region 
that is under examination reduces. Steps 5-8 involve procedures for adding cones 
which requires further bookkeeping. 

3.3. SOME ALGORITHMIC AND OPTIMALITY CONSIDERATIONS 

(a) Correlated Objectives 

The choice of w I in Step 0 is arbitrary. However, if b and d are close to each 
other the following selection procedure might be helpful. 

(i) Select (~, y-) E arg max[ax + dy: (x, y) ~ Z]. 
(ii) Select wl(K) E arg max[F(2, 37, w, K): w ~ W]. 

We will have (2, 37)E S. The following result shows how good such a procedure 
may be: 

THEOREM 6. For all K >i 0: 

| K) >1 max[O(w, K): w E W] 

+ min[(b - d)y: (x, y) ~ z] - max[(b - d)y: (x, y) E Z].  

Proof. See Appendix. 

If b and d are almost negatively correlated, then the following modification of (i) 
above might be helpful. 
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(i) Select (s 37) E arg max x miny[aX - dy: (x, y) E Z]. 

We will have (s 37) E S. 
We then have the following supporting result. 

THEOREM 7. For all K > 1: 

| K)/> max[O(w, K): w E W] 

+ min[(b + d)y: (x, y) E Z] - max[(b + d)y: (x, y) E Z] .  

Proof. See Appendix. 

Finally, it is of interest to see how good the solutions (s 37), given in Theorems 6 
and 7, are for the leader. We have the following theorem. 

THEOREM 8. Let (s 37r) be the solutions selected in steps (i) with r = 1, 2, 
respectively in Theorems 6 and 7, and (x*, y*) be an optimal solution to P3. Then: 

(i) F(x*, y*)/> F(Y 1, 371) >/F(x*, y*) + min[(b - d)y: (x, y) E Z] 

- max[(b - d)y: (x, y) E Z] .  (24) 

(ii) F(x*, y*) 1> F(Y 2, 372)/> F(x*, y*) + min[(b + d)y: (x, y) E Z] 

- max[(b + d)y: (x, y) E Z].  (25) 

Proof. See Appendix. 

(b) Degeneracy 

If W is degenerate, then in Step 2 the adjacent vertices may have the same value 
of w 1. The algorithm then skips all the way to Step 5 and proceeds from there. 

If W is non-degenerate, then in Step 6, A(W 1) may be replaced by the 
singleton: 

A(W 1) = {h  = ( /z ,  or) E R m + l :  w1/.~ - Or < 0,  /31s/l~ --  O" = 0,  

1 <~s <~N(wl) ,  or e [ 1 ,  - 1 1 } .  

In both this case, and in the degenerate case, the optimality of 19(~ 1, K) in Step 8 
follows because, under the circumstances postulated, we must have 

W C_ convex hull {w 1, { v l S } )  , 

and then, using the convexity of O(., K), w 1 is optimal. 
Step 3 is a standard linear program. 
In the general case, Steps 7 and 8 may be executed by linear programming. Let 
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{ha}, 1 ~< t ~< T(w 1) be the vertices of ^(w!) .  Then the primal linear program is as 
follows. 

LIP. (w 1) max [~] 

s.t. ~ - w t z t < < - - ~ r  t, l < - t < - T ( w  1) 

- w B  <~ - d 
w ~ O .  

The vertex set {1 t} will not, in general be known explicitly. To overcome this 
difficulty we use the dual of L.P.(w 1) and the column generation method of 
Dantzig and Wolfe [12]. The dual linear program is as follows, where o- is the 
vector with components {o -t} and / z  is the matrix with columns {tzt}. 

D.L .P . (w  1) min[z = -0-/3 - d3'] 

T(w 1 ) 

s.t. ~ /3,=1 
t = l  

- /x  3 - B'3'>~ 0 ,  

/3 ~>0,3'~>0. 

If 6 is the current simplex multiplier for the first constraint and s is the current 
simplex multiplier vector for the second set of constraints, then, at the current 
solution to D.L.P(wI) ,  the shadow cost of /3  t is: 

~/x t - o -t - 6 . 

The  candidacy of any /3 t as a potential basic variable arises only if 

( f ,  cr t) = ,~ E arg min [~/x - o- - 6] 
AEA(W I ) 

and 

min [~tz - o ~ - 6 ] ~ < 0 .  
xE^(w 1) 

Thus,  we do not need to list {h t} in advance. 
The candidacy of any component  of 3' as a potential basic variable is a 

straightforward matter.  Once the dual problem D.L.P.(w 1) has been solved, if 
~-~< 0, we have �9 ~< 0 and termination occurs at Step 8. If ~-> 0, then �9 > 0 and 
we use the dual solution to generate w 1. for Step 9. 

(c) Cycling 

This process must terminate in a finite number of steps unless there is cycling. 
Cycling occurs if, at iteration r, the best solution, 1. w r , obtained at Step 9, is the 

1 for some q < r. In order to avoid this, we do the following: same as Wq 
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Let  S o be the set of vertices at W that are fathomed using Steps 2, 4, and 5 
above. Let  A o be the set of vertices of W which are adjacent to some w E S o. If 
A o~So = O, then S o = Wv, and the process terminates with an optimal solution. If 
cycling occurs at iteration r, and Av~So ~ ~, then select any w E AoXSo, instead of 

1. w r . Since the set W o is edge connected, the process will terminate in a finite 
number  of steps. 

4. Computational Results 

Table I provides the results of a computational exercise of running 50 randomly 
selected problems of 6 different sizes for each method. The size of the problem is 
denoted by (nl,  n2, m) where n 1 and n 2 stand for the dimension of the leader's 
and follower's decision vectors respectively, and m is the number of constraints. 
All problems were run on an AT-I" PC6300+ microcomputer  with Intel 80286 
microprocessor,  and 80287 math co-processor. The linear programs in the penalty 
function or the k-th best algorithms were solved using the LINDO package, and 
pascal programs linked the different components of the iteration together. The 
Bard and Moore  [7] branch-and-bound method was implemented by modifying 
the code sent by Bard,  which uses XMP for the linear programming part. 

The  characterization of the problems generated was completely random; i.e. 
the coefficients of the problems were generated from a uniform distribution. The 
objective function parameters were all generated randomly to be in the closed set 
( - 1 0 ,  +10).  No attempt was made to check if the values of b and d were the 
same or close. The constraint parameters were generated randomly in the closed 
set ( - 5 ,  +5).  We varied the matrix density from 10% of non-zero terms to 75%. 
We did not identify which of these problems took the longest to solve or which 
ones produced degenerate solutions. 

The first test was to ensure that the problems were feasible from the point-of- 
view of the leader. Infeasible problems were discarded, and not included in the 
final results. It should be noted that around 50% of the randomly generated 
problems were discarded because of infeasibility. Clearly, if the values of b and d 
are close [see (7)-(10)] ,  the corresponding bi-level program would be easier to 
solve. However ,  we recorded average run times for problems that were solved, 
and did not flag cases that were solved more easily than others. 

Table I. Algorithmic performance (time = cpu seconds) 

Problem k-th Best Branch-and-Bound Penalty Method 
size time time time 

(5, 10, 6) 127.6 55.2 59.3 
(6, 14, 8) 111.7 81.9 87.2 

(8, 17, 10) 186.2 102.1 102.7 
(15, 30, 20) 1200.9 151.7 167.8 

(50, 50, 100) - 1043.9 1821.3 
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The penalty function method involves the setting up of a large value of the 
penalty parameter K, especially because we have proved that there is an exact 
value (Theorem 3). The starting value of K is chosen through experimentation. 
First, a very large value of K (say 1000) and a reasonable value (say 10) are 
chosen in turn. If the final results are very different, then K is set at 10 and at 
each Step 10, K is increased by A = 1 (i.e. a 10% increase), until optimality is 
changed. If the final results for K = 10 and K = 1000 are the same, these results 
are taken as optimal. This test involves an extra step and additional computation 
time associated with that step. However, the test reduces the average time of the 
computations. The choice of A also influences the computation time, but we have 
not evaluated its impact. 

We compared the penalty method proposed in this paper with the Bard-and- 
Moore [7] branch-and-bound method and with the Bialas and Karwan's [10] k-th 
best method. The penalty function method proposed in this paper does worse 
than Bard's [6] branch-and-bound method in terms of cpu time, but easily 
outperformed the k-th best method. The time taken by the penalty function is 
comparable to the branch-and-bound method for problems of small size, but the 
branch-and-bound method does better for larger problems. 

5. Relationship of the Penalty Function Approach to the Leader-Follower 
Game 

For a given value of K, an optimal solution (x(K), y(K)) to P5 will not, in 
general, give a leader-follower solution to the noncooperative game; i.e. in 
general y(K)J~RR(x(K)) .  This is because y(K) is a component of the maximand 
of the hybrid objective F(-,. ,  -, K) for a particular value of K, and not necessarily 
the follower's reaction to x(K). However, for any particular value of K for which 
the duality gap, ir(x(K), y(K),  w(K)), becomes zero, y(K) E RR(x(K)). 

Suppose that, for x = x(K), the follower solves his problem and gets 29(K) 
RR(x(K)).  Since the proposed penalty function approach results in y = y(K),  
instead of the rational reaction )?(K), then it is of interest to compute the 
follower's loss of optimality if y(K) is used instead of ~9(K). At any value of K, if 
~(K) is an optimal dual solution for the follower, associated with 29(K), then: 

"n'(x(K), y(K), w(K)) = w(K)(p  - Ax(K))  - dy(K) , (26) 

and 

�9 -(x(K), )~(K), ~(K)) = ~(K) (p  - Ax(K))  - dy(K) = 0, (27) 

where the last equality follows since, for a given x(K), ()7(K), ~(K)) is an optimal 
solution to the follower's problem, and thus the duality gap is zero. From (26) 
and (27) it follows that: 
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d 2 ( K )  - d y ( K )  = ( ~ ( K )  - w ( K ) ) ( p  - A x ( K ) )  + "n'(x(K), y ( K ) ,  w ( K ) )  . 

(28) 

w = @(K) is an optimal dual solution for the follower's problem, and the first 
term on the right-hand-side of (28) is non-positive. Thus, if the follower's loss, 
that results from playing y ( K )  instead of ~9(K), is defined by: 

then 

F . L ( K )  = dry(K) - d y ( K )  (29) 

0 <~ F . L . ( K )  <~ ~ ( x ( K ) ,  y ( K ) ,  w ( K ) ) .  (30) 

This gives an upper bound on the follower's loss. 
Finally, consider the situation where the follower insists on playing )~(K) at 

each iteration when the leader plays x ( K ) .  In this case if (x*, y*) solves P3, to 
determine the leader's loss of optimality we have to establish bounds for the 
difference: 

L . L ( K )  = ax* + by* - ax (K)  - b ~ ( K )  >t O . (31) 

The inequality (31) follows because, at any iteration K, (x (K) ,  .f,(K)) is in the 
feasibility set S, and (x*, y*) is optimal in S for the leader. We easily obtain 

ax* + by* - ax (K)  - b ~ ( K )  <- b ( y ( K )  - ~ (K) )  - K~r(x(K),  y ( K ) ,  w ( K ) )  . 

(32) 

Thus an upper bound on the loss of optimality for the leader if he uses x = x ( K )  

and the follower uses y = y(K) is given by: 

L . L ( K )  <- b ( y ( K )  - :9(K)) - K ~ ( x ( K ) ,  y(K),  w ( K ) )  . (33) 

In (33), K ~ ( x ( K ) ,  y(K),  w(K))---~O as K-->K*.  Also, for K > ~ K  *, as a result of 
assumption A1, y ( K )  = p ( K ) .  

The use of the above results depends upon the circumstances surrounding the 
actual resolution of the problem P3. We consider some possibilities. 

(a) If the penalty model is used by the leader to determine x ( K ) ,  without 
knowing x*, and the follower always chooses y(K),  then (33) gives an upper 
bound on the loss of optimality for the leader, enabling him to decide whether or 
not to seek a better solution. 

If y(K) is not uniquely determined for the follower, then the best upper bound 
for the loss of optimality for the leader, on the basis of the above information, is 
given by: 

L . L ( K )  <~ max [ b ( y ( K )  - y)] - K ~ ( x ( K ) ,  y ( K ) ,  w ( K ) )  . (34) 
y,~_RR(x(K)) 
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If {x(K), y(K), w(K)} are not uniquely determined, then if, for a specified value 
of K, U(K) is the set of optimal (x(K), y(K),  w(K)} solutions, (34) can be 
replaced by: 

L . L ( K )  <~ min max [ b ( y  - •) - K'n'(x, y ,  w)]. (35) 
(x,y,w)EU(K), yERR(x) 

(b) If both the leader and the follower agree to use the solutions to the penalty 
model, and if w* is an optimal dual solution, given x*, the leader's gain, over 
ax* + by*, is 

L.G(K)  = ax(K) + by(K) - ax* - by* 

= F(x(K), y(K),  w(K), K) + K~(x(K),  y(K),  w(K)) 

- F(x*, y*, w*, K) - K~r(x*, y*, w*) .  (36) 

Now 

F(x(K), y(K),  w(K), K)/> F(x*, y*, w*, K) (37) 

and 

y*, w*) = 0.  (3s) 

Hence the gain for the leader satisfies: 

C.C(K)  >1 y(K),  w(K)) . (39) 

It is seen that the lower bound in (39) in K times the upper bound (30). This may 
give some scope to allow the leader to pay the follower to adopt an (x(K), y(K)) 
solution. If (x(K), y(K),  w(K)) is not uniquely determined, then the appropriate 
(x(K), y(K)) solution, with compensation to the follower, may be sought. 

(c) The leader may use the solution to the penalty problem and the follower 
may use a rational reaction solution, as in (a), but when the rational reaction 
solution set is not a singleton, the follower may be induced, by a payment, to 
choose the one which minimizes, rather than maximizes, the upper bound on the 
loss of optimality for the leader. Thus "max" is replaced by "min" in (34). In this 
case, the known loss of optimality, given x(K),  for the follower is zero. 

6. Linear and Nonlinear Duality Formats 

6.1. THE L I N E A R  DUALITY FORMAT OF B A R D  [6] 

For the problem P3 an alternative version of penalty problem P5 is: 

Q5 Q(K) =max [(~(x, y, w, K) = ax + by - K(w(p - a x  - By))] 
x,y,w 

(40) 



A P E N A L T Y  F U N C T I O N  A P P R O A C H  413 

subject to constraints (15)-(17). Bard [6] uses this penalty function approach for 
levels 2 and 3 of a 3 level problem, not to solve the levels 2 and 3 problem, but 
essentially, via his Theorem 2, to provide an upper bound for the level 1 objective 
function value. Step 2 of Bard's three level problem for solving the problem at 
levels 2 and 3, uses an unspecified algorithm. If, however, we fix the level 1 
decision vector, x 1, at 0, the levels 2 and 3 problem reduces to a two level 
problem for which the penalty form Q(K) might be used in a similar manner. 

The analysis for Q(K) follows in exactly the same manner as for P(K). The 
difference between P(K) and Q(K) is that P(K) uses the duality gap as the 
penalty contribution, and Q(K) uses the complementary slackness function as the 
penalty contribution. There is some advantage in using P(K) rather than Q(K). It 
is easily seen that, for all feasible, x, y, w, and K E R+: 

G(x, y, w, K) --- ~'(x, y, w, K) + K(wB - d)y . (41) 

In view of constraints (16), (17), we have: 

d(x, y, w, K) P(x, y, w, K) , (42) 

and 

Q(K) >~P(K), V K E R + .  (43) 

Now both {Q(K)} and {P(K)} converge, non-increasing, to the optimal value 
of the leader's objective function as K---~ ~. Thus, for any given K>~ O, P(K) 
provides at least as good an upper bound as does Q(K). Also {P(K)} may 
converge more quickly. 

A key question is: how big should K be in order to guarantee that solving the 
penalty problems P5 and Q5 will solve the bi-level problem, bearing in mind the 
possibility that solutions may be obtained before we reach any specific upper- 
bound on K needed for this guarantee? A priori bounds, used to establish 
Theorem 3 are, respectively: 

K(Q ) = max[(ax + by - a2 - b f~) /w(p  - A.~ - B3~)] 

( x , y ) ~ Z v ,  (2, 29) E Zv 

w ( p - A 2 - B f O > O ,  w E W v ,  

K(P) =max[(ax + by - a2 - b.P)/(w(p - A2) - d$)] 

(x,y) Zo, 

w ( p - A 2 ) - d . 9 > O ,  w E W v .  

(44) 

(45) 

Given the constraints (15)-(17) we see that 

K(Q)  >i K(P) .  (46) 
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6.2. NONLINEAR DUALITY FORMAT 

For non-linear problems of the general kind P1, it is possible to generalize P5. We 
will assume that appropriate conditions hold for the strong duality results to hold 
(e.g., see [14], Theorem 3). Then the dual function for the follower's problem, 
given x E X is, with w E R~: 

h(x, w) =max If(x, v) - wg(x, v)]. (47) 
o @ Y  

The analogue of P5 then becomes: 

P6 P(K) =max [/e(x, y, w, K) = F(x, y) - K(h(x, w) - f ( x ,  y))] (48) 
x , y , w  

s.t. g(x, y) <~ 0 (49) 

x C X ,  y @ Y ,  w E R + .  (50) 

In the linear case, this reduces to P5. It is to be noted that, although the 
complementary slackness conditions 

wg(x, v) = o (51) 

hold in (47), at an optimal solution to (48), we have no analogue of (16) in the 
general non-linear case, and hence it is not possible to produce an analogue of 
Bard's Q5 formulation. Given the strong duality conditions problem P6 takes the 
form: 

P7 P(K) =max min [F(x, y) + Kf(x, y) - K(f(x,  v) - wg(x, v))] 
x , y , w  u 

=rain max [V(x, y) + Kf(x, y) - K(f(x,  v) - wg(x, v))] 
o x , y , w  

s.t. x E X ,  y @ Y ,  w E R +  , v ~ Y .  

For the linear problem, with X = R+ 1, Y = R+ 2, problem P7 takes the form, 
alternatively to problem P5: 

P8 P(K) =max min [ax + by + Kd(y - v)] 
x , y , w  o 

=rain max lax + by + Kw(Ax + By - p ) ]  
x , y , w  

s.t, x E R ~ ' ,  yER"+ 2, wER"+,  vER~+ 2. 

The theoretical analysis for the general non-linear case, subject to the strong 
duality requirement, is much more difficult than for the linear case. Nonetheless 
the above format does provide a framework for tackling this problem. 

If | K) is defined analogously to (20), then Theorem 1 will not hold in 
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general. Indeed, without the reduction possible for the linear form in (14)-(17), 
~)(., K) is neither convex nor concave in general. Finding algorithms for problem 
P7 is a challenge. Problem P8 is a bi-linear, max min problem which provides a 
challenge for the extensions of ordinary bi-linear programming. 

If we define a function F(-, K) o n  R n2 by: 

F(v, K) = sup [F(x, y) + Kf(x, y) - K( f (x ,  v) - wg(x, v))] 
X , y , W  

s.t. x � 9  1 R~ 2 , yc , w E R  m + , 

then problem P7 takes the form: 

P9 P(K)  =min [V(v, K)] 

s.t. v E R+ 2 . 

This is a convex, non-differentiable, optimization problem for which techniques 
exist. For problem P6 we have the following results: 

(i) Theorem 2 will not hold in general. 
(ii) If A1 holds and the feasible regions are non-empty, convex and compact, 

then Theorem 3 will be replaced by an appropriate convergence result, with 
no finite exact penalty parameter value existing in general. Thus, in this case 
the sequential K analysis is important. 

(iii) Theorem 4 will hold for non-empty compact feasible regions. 
(iv) Theorem 5 will not hold, but it may be possible to produce a corresponding 

result to assist any algorithm. 
(v) Theorems 6, 7, 8 will need revising in some suitable form. 

With the appropriate determination of duality gap, I t (x ,  y, w ) = h ( x ,  w ) -  
f (x ,  y),  then both (30) and (39) will hold. This thus allows us to use much the 
same requirements as given in Section 5, using the K-analysis to reach acceptable 
solutions. Also, as a consequence when zr(x(K), y ( g ) ,  w(K))  = O, (x(K),  y (K))  is 
an optimal solution. 

The bounds on loss of optimality given in (33), (34) will need revision. 

6.3. ASSUMPTION A1 

Finally for P1, condition A1 may be relaxed by using the following, more general 
problem format PGI: 

PG1 max min IF(x, y)] (52) 
x y 

s.t. (2)-(4).  (53) 

PG5  P G ( K )  =max min IF(x, y, w, K)] (54) 
X , W  y 
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s.t. (15)-(17).  

Problem formulation PG1 is already known. 
For the problems PG1 and PG5, Theorem 4 will hold, and so will Theorem 3, 

without the requirement of assumption A1. 

7. Summary and Comments 

This paper develops a duality gap-penalty function format approach to the 
bi-level programming problem, which is applicable, in principle, to multi- 
decisionmaking, multi-level, non-linear problems. The duality gap-penalty func- 
tion approach seems to be a natural way of capturing optimality characteristics, 
and of exploring the actual resolution of the decisionmaking process, as described 
in Section 5. The particular case of the linear problem is studied in detail, and an 
algorithm developed, using a modification of the method of Tuy to solve the 
nonconvex optimization problem derived. The computational results show that 
this particular nonconvex optimization approach is not as good as the Bard- 
Moore [7] branch-and-bound method, but is somewhat better than the k-th best 
method of Bialas and Karwan [10]. Thus, in its current form, it is non-competi- 
tive. However, supplemented by results shows those given in Theorems 6-8, the 
same format, but with a different optimizing algorithm, may perform better. The 
various bounding results have not been used in a branch and bound mode, but 
this is possible. 

The results of Section 5 enable an interactive decisionmaking process to be 
developed in which the various solutions developed, coupled with associated 
bounds on loss of optimality, may be used to explore possible compromises. 

In Section 6.1 arguments are given for some advantages of the proposed duality 
approach over that of Bard [6], in terms of the penalty parameter K. A 
theoretical framework for finding the critical K* is also given, although we have 
not tackled the computational problem involved. 

A format is given in Section 6.2 for the nonlinear problem, applicable to the 
earlier linear models. The computational problem is a challenging one, aided by 
any mathematical properties it is possible to develop. In general, it is not possible 
to produce an analogue of Bard's [6] approach. The non-linear penalty problem 
P6 leads to a min max bi-linear optimization problem in the linear case which 
provides a challenge for developing extensions of the standard bi-linear algo- 
rithms. In the non-linear case, the problem is reversible to a convex non- 
differentiable optimization problem, for which techniques exist. Finally we note 
that the singleton assumption A1 is weaker than the usual one required for other 
algorithms. It is not required at any stage of the computations except at a terminal 
point which is optimal and is only required for the derivation of the exact penalty 
function result. 
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Appendix. Proof of Theorems 

Proof  o f  Theorem 6. 

|  1, K)  = max[ax + by - K ( w l ( K ) ( p  - Ax)  - dy) : (x, y) E Z] 

/> max[ax + dy - K ( w I ( K ) ( p  - Ax)  - dy) : (x, y) E Z] 

+ min[(b - d)y:  (x, y) E Z] 

>1 a2 + d j  - K ( w l ( K ) ( p  - A2 )  - d~) 

+ min[(b - d)y : (x, y) E Z] 

= max[ax + dy: (x, y) E S] 

+ min[(b - d)y:  (x, y) E Z] 

= max[ax + dy - K ( w ( p  - Ax)  - dy): (x, y, w) E Z x W] 

+ min[(b - d)y:  (x, y) @ Z] 

/> max[ax + by - K ( w ( p  - Ax)  - dy): (x, y, w) ~ Z x W] 

+ min[(b - d)y:  (x, y) E Z] + min[(d - b)y:  (x, y) E Z] 

= max[|  K)  : w E W] 

+ min[(b - d)y : (x, y) E Z] - max[(b - d)y:  (x, y) E Z] .  

Proo f  o f  Theorem 7. 

|  1, K)  = max[ax + by - K ( w l ( K ) ( p  - Ax)  - dy) : (x, y) E Z] 

i> max[ax - dy - K ( w t ( K ) ( p  - Ax)  - dy) : (x, y) E Z] 

+ min[(b + d)y:  (x, y) E Z] 

>! a2 + ( K -  1 ) d y -  K ( w l ( K ) ( p  - A2) )  

+ min[(b + d)y:  (x, y) ~ Z] 

= max[ax - dy: (x, y) E S] 
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+ min[(b + d)y: (x, y) @ Z] 

= max[ax - dy - K(w(p  - Ax)  - dy): (x, y, w) E Z x W] 

+ min[(b + d)y: (x, y) E Z] 

~> max[ax + by - K(w(p  - Ax)  - dy) : (x, y, w) E Z x W] 

+ min[(b + d)y: (x, y) C Z] - max[(d + b)y: (x, y) E Z] 

= max[| K):  w E W] + min[(b + d)y: (x, y) E Z] 

- max[(b + d)y: (x, y) E Z] .  

Proof o f  Theorem 8. 
(i) Using the optimality of (x*, y*), and noting that (x*, y*) ~ S, (~1,371) E S, we 
have: 

F(x*, y*) >i F(Y 1, y l )  = aZ1 + by1 

= aY I + d37 1 + (b - d)37 ~ 

>! ax* + dy* + (b - d)371 

= ax* + by* + (b - d)37 1 - (b - d)y* 

>i F(x*, y*) + min[(b - d)y: (x, y) E Z] 

- max[(b - d)y:  (x, y) E Z] .  

(ii) Using the optimality of (x*, y*) and noting that (x*, y*) E S, (~2,372) ~ S, we 

have: 

F(X*,  y * )  >1 F(.~ 2, 372) = a~2 + b/~2 

= aa7 2 - d37 2 + (b + d)37 2 

>~ ax* - dy* + (b + d)37 2 

= ax* + by* + (b + d )y  2 - (b + d)y* 

F(x*, y*) + min[(b + d)y: (x, y) E Z] 

- max[(b + d)y: (x, y) E Z]. 
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